Embedding Sums of Cancellative Modes into Semimodules
نویسندگان
چکیده
منابع مشابه
Embedding Modes into Semimodules, Part I
By recent results of M. Stronkowski, it is known that not all modes embed as subreducts into semimodules over commutative unital semirings. Related to this problem is the problem of constructing a (commutative unital) semiring defining the variety of semimodules whose idempotent subreducts lie in a given variety of modes. We provide a general construction of such semirings, along with basic exa...
متن کاملVarieties of Differential Modes Embeddable into Semimodules
Differential modes provide examples of modes that do not embed as subreducts into semimodules over commutative semirings. The current paper studies differential modes, so-called Szendrei differential modes, which actually do embed into semimodules. These algebras form a variety. The main result states that the lattice of non-trivial subvarieties is dually isomorphic to the (non-modular) lattice...
متن کاملEmbedding Entropic Algebras into Semimodules and Modules
An algebra is entropic if its basic operations are homomorphisms. The paper is focused on representations of such algebras. We prove the following theorem: An entropic algebra without constant basic operations which satisfies so called Szendrei identities and such that all its basic operations of arity at least two are surjective is a subreduct of a semimodule over a commutative semiring. Our t...
متن کاملEmbedding normed linear spaces into $C(X)$
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
متن کاملEMBEDDING OF THE LATTICE OF IDEALS OF A RING INTO ITS LATTICE OF FUZZY IDEALS
We show that the lattice of all ideals of a ring $R$ can be embedded in the lattice of all its fuzzyideals in uncountably many ways. For this purpose, we introduce the concept of the generalizedcharacteristic function $chi _{s}^{r} (A)$ of a subset $A$ of a ring $R$ forfixed $r , sin [0,1] $ and show that $A$ is an ideal of $R$ if, and only if, its generalizedcharacteristic function $chi _{s}^{...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2005
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-005-0081-2